Abstract
In order to improve a refrigeration system’s energy efficiency, the separation efficiency of its oil separator should be improved. To do so, we turned to nature for inspiration. A Namib Desert beetle collects water in fog by using its skin, which combines hydrophilic and hydrophobic surfaces. Inspired by nature’s design, we applied a surface with oleophilic and oleophobic patterns to an oil separator used in a refrigeration system. In order to make the oil separator, an appropriate design was established using computational fluid dynamics. A cyclone-type oil separator was produced with an oleophobic-treated surface on its lower cup. The efficiency of the treated surface of this oil separator was tested with an open-type experimental setup using an oil mist generator. To obtain conditions similar to those of a refrigeration system in the open-type experimental setup, the oil particle diameter and working fluid pressure were set to yield a Stokes number similar to that of oil particles in the oil separator of the refrigeration system. The oil separator with the treated oleophilic–oleophobic surface improved its oil separation efficiency by 1.67% and its pressure drop by 2.48% compared to a conventional cyclone-type oil separator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Precision Engineering and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.