Abstract

Abstract. Tropospheric delay variability remains a significant source of error in the InSAR-derived measurements. Numerical weather models have been proposed as an alternative technique to mitigate tropospheric delays in InSAR and have become a standard procedure for some multi-temporal InSAR processing workflows. This study evaluates the viability of three numerical weather models for mitigating tropospheric delay in InSAR for a tropical region. We assess their performance in correcting tropospheric delay in Sentinel-1 interferograms at different spatial wavelengths using variograms. Their performance is validated using GNSS tropospheric delay and our proposed SAR-derived tropospheric delay estimates. The results indicate that numerical weather model estimates do not mitigate short-wavelength turbulent delays, but can mitigate long-wavelength stratified delays to some extent, which may also introduce additional errors in interferograms. At a spatial wavelength of 40 km, 36% of the interferograms showed increased spatial autocorrelation after correction with GACOS, 55% with ERA-5, and 51% with MERRA-2. In contrast the InSAR-derived tropospheric delays resulted in a significant reduction in variance at all wavelengths indicating the ability to mitigate both turbulent and stratified delays. Our study demonstrates the limited potential of numerical weather model estimates to satisfactorily mitigate trophospheric noise in InSAR and the capability of InSAR-derived trophospheric delay to significantly correct tropospheric noise in InSAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.