Abstract

This research evaluated nitrogen-removing bioretention systems for control of nutrients, organics, and solids in agricultural runoff. Pilot-scale experiments were conducted with bioretention systems incorporating aerobic nitrification and anoxic denitrification zones with sulfur or wood chips as denitrification substrates. Varying hydraulic loading rates (HLRs), influent concentrations, and wetting and drying periods were applied to the units during laboratory and two seasons of field tests with dairy farm runoff. Total N removal efficiencies greater than 88% were observed in both units with synthetic storm water. In first-season field tests, moderate removal efficiencies were observed for chemical oxygen demand (46%), suspended solids (69%), total phosphorous (TP) (66%), and total N (65%). During the second season, operational changes in the farm resulted in lower organic, solids, and nutrient loadings resulting in improved effluent quality, especially for suspended solids (81% removal) and total N (82% ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.