Abstract

An antibacterial continuous flow microreactor was successfully prepared by sequential mussel-inspired surface engineering of microchannels by using catechol-grafted poly(N-vinylpyrrolidone) and immobilization of near-infrared active Cs0.33WO3 nanoparticles inside the polydimethylsiloxane(PDMS)-based microreactors. Excellent phothothermal antibacterial acitivity over 99.9% was accomplished toward Gram-positive and -negative bacteria upon near-infrared irradiation during continuous operation up to 30 days. This was achieved without releasing Cs0.33WO3 nanoparticles from the surface of the microchannels, confirming the robust immobilization of photothermal agents through the mussel-inspired chemistry. The cleaning of used microreactors was easily attainable by simple acid treatment to release immobilized photothermal agents from the surface of the microchannels, enabling efficient recycling of used microreactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.