Abstract

In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the DSSC. The ZnO layers were annealed at different temperatures under various gas sources. Indeed, the forming gas (FG) (N2/H2 95:5) was found to enhance the conductivity by a factor of 103 compared to nitrogen (N2) or oxygen (O2) annealing gas. The NR width varied between 40 and 100 nm and the length from 500 to 1000 nm, depending on the growth time. The obtained NWs had a length of 850 nm. The properties of the developed ZnO NW and NR layers with different thicknesses and their effect on the photovoltaic parameters were studied. An internal coverage of the ZnO NWs was also applied by the deposition of a thin TiO2 layer by reactive sputtering to improve the cell performance. The application of this layer increased the overall short circuit current Jsc by seven times from 2.45 × 10−3 mA/cm2 to 1.70 × 10−2 mA /cm2.

Highlights

  • Energy demand has increased rapidly during the last forty years to reach a growth rate of 1.8% per year [1]

  • Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the dye-sensitized solar cells (DSSCs)

  • We reported the fabrication and characterization of natural DSSCs with two different ZnO layer structures

Read more

Summary

Introduction

Energy demand has increased rapidly during the last forty years to reach a growth rate of 1.8% per year [1]. Zinc oxide (ZnO) has been studied as a mesoporous wide band gap semiconductor for use in DSSCs. It presents itself in the form of different morphological nanostructures, such as nanorods, nanocrystals, nanowires, nanotubes and nanowalls that can be exploited to optimize the dye loading [6,7,8,9].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call