Abstract

This paper quantifies the coverage area of Low-Power Wide-Area Networks (LPWAN) for Packet Success Rates (PSR) above 85%, where acceptable Quality of Service (QoS) can be achieved. The network consists of battery-operated end-nodes (ENs) and multiple stationary gateways (GWs). We consider asynchronous communication that uses ALOHA-based random channel access. Each transmission from the ENs can be received by multiple GWs. Such spatial diversity results in favorable Signal-to-Noise ratios (SNR). The LoRa modulation is assumed and its specific features, such as IQ inversion, further contribute to decreasing the impact of interference. An increase in the GW density improves network performance, which allows support for a larger density of end-nodes as well as increasing the coverage area. Our simulation results show that a suburban area of up to 1.44 km2 can be covered with five GWs with up to fifty end-nodes with a PSR greater than 86%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call