Abstract

In this work, the effectiveness of nanocomposite surface treatments as protective systems for artistic stones was evaluated. Pyrolitic silica and titania nanoparticles were dispersed in a commercial silicon-based polymer and applied on marble and travertine samples. Artificial aging processes, both in climatic chamber and in solar box, were carried out to simulate real degradation processes in terms of photo-thermal effects and physical-chemical damage. The performances of the nanocomposites used as consolidant were evaluated comparatively by means of diverse diagnostic techniques, namely: scanning electron microscopy (SEM), laser induced fluorescence (LIF), ultrasonic technique, colorimetry, total immersion water absorption and contact angle. The results show that some properties of conservation materials can be improved by the presences of nanoparticles because they induce substantial changes of surface morphology of the coating layer and counter the physical damage observed during artificial weathering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.