Abstract

The impact of strain selection and culture conditions on bacterial nanocellulose (BNC) productivity and quality was investigated by using four strains, static and agitated cultures, and an initial pH in the range 4-6. With agitation, strain DHU-ATCC-1 displayed highest productivity [1.14 g/(L × d)]. In static cultures, DHU-ZGD-1186 exhibited superior BNC yield on consumed glucose (0.79 g/g), and lowest by-product formation with respect to gluconic acids [≤0.07 g/(L × d)]. By-product formation typically decreased in the order gluconic acid >2-keto-gluconic acid >5-keto-gluconic acid, and was lowest in cultures with high initial pH. The BNC from DHU-ZGD-1186 exhibited higher average viscometric degree of polymerization (DPv), higher crystallinity index, and higher tear index. In conclusion, both strain selection and cultivation conditions had an impact on BNC productivity and properties. Productivity, DPv, crystallinity, and mechanical strength of BNC from agitated cultures could be similar to or even higher than the corresponding values for static cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.