Abstract

In this paper, we propose a multi-hop multiple input multiple output (MIMO) decode-and-forward relaying protocol in cognitive radio networks. In this protocol, a multi-antenna secondary source attempts to send its data to a multi-antenna secondary destination with assistance of multiple intermediate multi-antenna nodes, in presence of a multi-antenna secondary eavesdropper. A primary network includes a primary transmitter and a primary receiver which are equipped with multiple antennas, and use transmit antenna selection (TAS) and selection combining (SC) to communicate with each other. Operating on the underlay spectrum sharing method, the secondary source and relay nodes have to adjust their transmit power so that the outage performance of the primary network is not harmful and satisfy the quality of service (QoS). Moreover, these secondary nodes also reduce their transmit power so that the intercept probability (IP) at the eavesdropper at each hop is below a desired value. To improve the outage performance of the secondary network under the joint constraint of IP and limited interference, the TAS/SC method is employed to relay the source data hop-by-hop to the destination. We derived exact closed-form expressions of the end-to-end (e2e) outage probability (OP) and IP of the proposed protocol over Rayleigh fading channels. Monte Carlo simulations are then performed to verify the theoretical derivations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.