Abstract

The technique of carrier phase (CP), based on the global navigation satellite system (GNSS), has proven to be a highly effective spatial tool in the field of time and frequency transfer with sub-nanosecond accuracy. The rapid development of real-time GNSS satellite orbit and clock determinations has enabled GNSS time and frequency transfer using the CP technique to be performed in real-time mode, without any issues associated with latency. In this contribution, we preliminarily built the prototype system of real-time multi-GNSS time and frequency transfer service in National Time Service Center (NTSC) of the Chinese Academy of Sciences (CAS), which undertakes the task to generate, maintains and transmits the national standard of time and frequency UTC(NTSC). The comprehensive assessment of the availability and quality of the service system were provided. First, we assessed the multi-GNSS state space representation (SSR) correction generated in real-time multi-GNSS prototype system by combining broadcast ephemeris through a comparison with the GeoForschungsZentrum (GFZ) final products. The statistical results showed that the orbit precision in three directions was smaller than 6 cm for global positioning system (GPS) and smaller than approximately 10 cm for BeiDou satellite system (BDS). The root mean square (RMS) values of clock differences for GPS were approximately 2.74 and 6.74 ns for the GEO constellation of BDS, 3.24 ns for IGSO, and 1.39 ns for MEO. The addition, the GLObal NAvigation Satellite System (GLONASS) and Galileo satellite navigation system (Galileo) were 4.34 and 1.32 ns, respectively. In order to assess the performance of real-time multi-GNSS time and frequency transfer in a prototype system, the four real-time time transfer links, which used UTC(NTSC) as the reference, were employed to evaluate the performance by comparing with the solution determined using the GFZ final products. The RMS could reach sub-nanosecond accuracy in the two solutions, either in the SSR or GFZ solution, or in GPS, BDS, GLONASS, and Galileo. The frequency stability within 10,000 s was 3.52 × 10−12 for SSR and 3.47 × 10−12 for GFZ and GPS, 3.63 × 10−12 for SSR and 3.53 × 10−12 for GFZ for BDS, 3.57 × 10−12 for SSR and 3.52 × 10−12 for GFZ for GLONASS, and 3.56 × 10−12 for SSR and 3.48 × 10−12 for GFZ for Galileo.

Highlights

  • The global navigation satellite system (GNSS) has become an effective tool in time transfer

  • We present issues related to the multi-GNSS state space representation (SSR) products and performance of time transfer in prototype system based on the experiment

  • As GNSS satellite products are primary prerequisites for time transfer, which slightly affects the capacity of the system service, we first assessed the quality of real-time multiGNSS SSR products in prototype system by referencing to the GFZ final precise product, available from GFZ for day of year (DOY) 346–349, 2019

Read more

Summary

Introduction

The global navigation satellite system (GNSS) has become an effective tool in time transfer. The improvements in precise GNSS satellite orbit and clock products have led to the introduction of all-in-view (AV) and carrier-phase (CP) techniques. The international GNSS service (IGS) provides three latency types of satellite orbit and clock products, such as ultra-rapid, rapid, and final products [12,13,14,15] The latter two products, high in quality, have latencies of approximately 17 h and 13 days after the end of the preceding observation and the last day of the week, respectively. This causes most applications, such as precise positioning and time transfer, to be limited to the post-processing mode

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.