Abstract

A technique is presented to characterize the signal-to-interference-plus-noise ratio (SINR) of a representative link with a multiantenna linear minimum-mean-square-error receiver in a wireless network with transmitting nodes distributed according to a doubly stochastic process, which is a generalization of the Poisson point process. The cumulative distribution function of the SINR of the representative link is derived, assuming independent Rayleigh fading between antennas. Several representative spatial node distributions are considered, including networks with both deterministic and random clusters, strip networks (used to model roadways, for example), hardcore networks and networks with generalized path-loss models. In addition, it is shown that if the number of antennas at the representative receiver is linearly increased with the nominal node density, the signal-to-interference ratio converges in distribution to a random variable that is nonzero in general and a positive constant in certain cases. This result indicates that to the extent that the system assumptions hold, it is possible to scale such networks by increasing the number of receiver antennas linearly with the node density. The results presented here are useful in characterizing the performance of multiantenna wireless networks in more general network models than what are currently available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.