Abstract

Massive MIMO (mMIMO) is a key technology for improving propagation conditions and extending geographical coverage of wireless communications. We here address a mMIMO full-duplex relay network for machine-type-communications where channel state information availability at the transmitter is impractical. In this scenario, we argue that high end-to-end data rates can be achieved even if no precoding is performed at the transmitting nodes. We first formulate an optimization problem aiming at maximizing the achievable rate, considering the source transmit power to depend on the transmit power distribution at the relay node. We then solve this problem by letting the number of antennas grow large, and derive closed-form expressions for the transmit power at the source and relay, as well as for the system data rate. Our results, show that the rate obtained when no precoding is implemented at the relay, or at any of the transmitters, closely matches that of SVD precoding under the optimum receiver, and still achieves very high values in the case of the ZF and the MMSE receiver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call