Abstract

Approaches for dealing with item omission include incorrect scoring, ignoring missing values, and approaches for nonignorable missing values and have only been evaluated for certain forms of nonignorability. In this paper we investigate the performance of these approaches for various conditions of nonignorability, that is, when the missing response depends on i) the item response, ii) a latent missing propensity, or iii) both. No approach results in unbiased parameter estimates of the Rasch model under all missing data mechanisms. Incorrect scoring only results in unbiased estimates under very specific data constellations of missing mechanisms i) and iii). The approach for nonignorable missing values only results in unbiased estimates under condition ii). Ignoring results in slightly more biased estimates than the approach for nonignorable missing values, while the latter also indicates the presence of nonignorablity under all simulated conditions. We illustrate the results in an empirical example on PISA data.

Highlights

  • Approaches for dealing with item omission include incorrect scoring, ignoring missing values, and approaches for nonignorable missing values and have only been evaluated for certain forms of nonignorability

  • In this paper we investigate the performance of these approaches for various conditions of nonignorability, that is, when the missing response depends on i) the item response, ii) a latent missing propensity, or iii) both

  • For strong missing not at random (MNAR), in which only otherwise incorrect responses are missing, the approach of incorrect scoring resulted in unbiased estimates of the mean of the person parameters

Read more

Summary

Introduction

Approaches for dealing with item omission include incorrect scoring, ignoring missing values, and approaches for nonignorable missing values and have only been evaluated for certain forms of nonignorability. In this paper we investigate the performance of these approaches for various conditions of nonignorability, that is, when the missing response depends on i) the item response, ii) a latent missing propensity, or iii) both. No approach results in unbiased parameter estimates of the Rasch model under all missing data mechanisms. Incorrect scoring only results in unbiased estimates under very specific data constellations of missing mechanisms i) and iii). The approach for nonignorable missing values only results in unbiased estimates under condition ii). Ignoring results in slightly more biased estimates than the approach for nonignorable missing values, while the latter indicates the presence of nonignorablity under all simulated conditions. We illustrate the results in an empirical example on PISA data

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.