Abstract

The orientation of the enzyme molecular on the interface of the carrier affects its activity. Therefore, it is very important to controllably induce the orientation of the enzyme on the surface to improve the performance of the immobilized enzyme. Magnetic nanoparticles were used to construct microenvironments with the different surface hydrophobicity and charge characteristics by controlled modification, and those particles with various microenvironments were further used to study their interaction with the lipase. The amount and activity of immobilized enzyme on different magnetic nanoparticles surfaces were studied by physical adsorption and covalent binding. Through the enzyme surface and particle surface characteristics analysis, the possible preferred orientation of enzyme and enzyme conformation on different surfaces were inferred, which well explained the effect of surface induction on enzyme loading and activity. The methods of surface microenvironment regulation and the strategy of controllable induction of enzyme orientation adopted in this study are enlightening for the rational design of immobilized enzyme methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call