Abstract

Microbial induced carbonate precipitation (MICP) is known as a significant process for remediating heavy metals contaminated environment. In this study, a novel Cd-resistant ureolytic bacteria was isolated and identified as Enterobacter sp. Its performances for immobilizing Cd in solution and soil were systematically discussed at different treatment conditions. Results showed that initial pH and Cd concentration were important parameters to influence Cd removal rate. The maximal Cd removal rate in solution reached 99.50 % within 7 days by MICP. The precipitation produced in Cd removal process were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectrometer to understand the removal mechanism. Analyses showed that Cd removal mechanism of CJW-1 was predominately via biominerals including calcites and vaterites to absorb Cd2+. Cd immobilization tests demonstrated that the highest Cd-immobilization rate in soil could reach 56.10 %. Although all treatments contribute to soil pH, fertility, and enzyme activities improvement, oyster shell wastes (OS) had a better effect on soil cation exchange capacity. All treatments had negative effects on soil respiration and bacterial community, but OS can alleviate such adverse influence. Our results emphasized that Cd-resistant ureolytic bacteria strain CJW-1 combined with OS had excellent ability and reuse value to remediate Cd-contaminated environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call