Abstract

This paper presents the preparation and characterization of bentonite coated with hydroxide double lamellar Mg/Al-bentonite and Zn/Al-bentonite as a potential adsorbent material. The coating process involved co-precipitation of mixed metal nitrate solution (Mg-Al) or (Zn-Al), followed by immersion of bentonite (B-Na+) dispersion. The structures and morphologies of the coated bentonites were characterized using XRD, FTIR, BET, and SEM analysis. The results of the BET analysis indicate that Mg/Al-bentonite and Zn/Al-bentonite have larger surface areas and pore volumes compared to bentonite alone. Specifically, the surface area of Mg/Al-bentonite is 209.25 m2/g with a pore volume of 0.423 cm3/g, while Zn/Al-bentonite has a surface area of 175.95 m2/g and a pore volume of 0.313 cm3/g. In contrast, the surface area and pore volume of bentonite alone are 110.43 m2/g and 0.132 cm3/g, respectively. The Mg/Al-bentonite reaches 85% uptake within 3 h (equivalent to 724.20 mg/g at 25 °C and pH 7), achieving rapid equilibrium. In contrast, the Zn/Al-bentonite achieves a maximum adsorption of 74% within 5 h under identical pH and temperature conditions, corresponding to 650.34 mg/g. The error function values, including the correlation coefficient R2, chi-square test χ2, and residual sum of squares RSS, were calculated to evaluate both kinetic and isotherm models. The kinetic adsorption data agreed well with a pseudo-second-order model. The adsorption process followed the Sips isotherm model, and the monolayer adsorption capacity of Mg/Al-bent and Zn/Al-bent composites was 872.41 (R2 = 0.974) and 678.45 mg/g (R2 = 0.983), respectively. The thermodynamic analysis of the adsorption process revealed that it occurred spontaneously with an endothermic characteristic. The parameters ΔS, ΔH, and ΔG were used to determine this.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call