Abstract
Adsorptive removal of the predominant polycyclic aromatic hydrocarbons (PAHs), represented by phenanthrene, from hot gases using mesoporous adsorbents (mesosilicas MCM-41 and SBA-15, and mesocarbon CMK-3) has been studied through tests of column adsorption and temperature programmed desorption (TPD). Adsorption equilibria on MCM-41 and CMK-3, and on SBA-15 were well described by Langmuir and Freundlich models, respectively, showing the order of adsorption capacity of CMK-3 > SBA-15 > MCM-41 originated from different geometrical structures and texture properties. Adsorption dynamics based on breakthrough fitting by the constant-pattern wave propagation model showed that mesoporosity contributed to fast overall adsorption kinetics by reducing the internal resistance as being the predominant mass-transfer step, particularly on SBA-15 with a 2-D cross-linked structure. The TPD tests revealed the order of ease of desorption of SBA-15 ≈ MCM-41 > CMK-3, where the structural advantage on SBA-15 dominated the strong site binding as indicated by the intrinsic activation energy and exponential factor obtained by TPD models. Results from different TPD models showed that re-adsorption effect during desorption increased with decreasing dimension of adsorbent structure and that the utilization of the simplified linear TPD model could be violated by the strong sorbate-sorbent binding. Comparisons with traditional adsorbents and with the removal of naphthalene by these mesoporous adsorbents were made, showing higher applicability of CMK-3 for phenanthrene regarding stronger adsorption affinity and capacity as well as decreased disadvantages in regenerability relative to mesosilicas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.