Abstract

This letter characterizes the performance of maximum ratio transmission (MRT) in ad hoc networks with simultaneous wireless information and power transfer (SWIPT). We assume that the transmitters are equipped with multiple antennas and use MRT, while the typical receiver is equipped with a single antenna and an energy harvesting receiver using time switching (TS) or power splitting (PS) receiver architectures. First, using stochastic geometry and considering the signal-to-interference plus noise ratio, we derive the exact outage probability at the reference receiver in closed-form. Simulation results confirm the accuracy of the derived analytical expressions. Then, we use the delay-tolerant throughput and delay-limited throughput, which are related to the outage probability, as metrics to study the system performance. The results show that for the delay-limited throughput, PS outperforms TS at low rate or at high energy harvesting ratio, respectively. For delay-tolerant throughput, PS always outperforms TS for any energy harvesting ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.