Abstract

Identification of the causative pathogen in infectious diseases is important for surveillance and to guide treatment. In low- and middle-income countries (LMIC), conventional culture and identification methods, including biochemical methods, are reference-standard. Biochemical methods can lack sensitivity and specificity and have slow turnaround times, causing delays in definitive therapy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI–TOF MS) is a rapid and accurate diagnostic method. Most studies comparing MALDI–TOF MS and biochemical methods are from high-income countries, with few reports from LMIC with tropical climates. The aim of this study was to assess the performance of MALDI–TOF MS compared to conventional methods in the Philippines. Clinical bacterial or fungal isolates were identified by both MALDI–TOF MS and automated (VITEK2) or manual biochemical methods in the San Lazaro Hospital, Metro Manila, the Philippines. The concordance between MALDI–TOF MS and automated (VITEK2) or manual biochemical methods was analyzed at the species and genus levels. In total, 3530 bacterial or fungal isolates were analyzed. The concordance rate between MALDI–TOF MS and biochemical methods was 96.2% at the species level and 99.9% at the genus level. Twenty-three isolates could not be identified by MALDI–TOF MS. In this setting, MALDI–TOF MS was accurate compared with biochemical methods, at both the genus and the species level. Additionally, MALDI–TOF MS improved the turnaround time for results. These advantages could lead to improved infection management and infection control in low- and middle-income countries, even though the initial cost is high.

Highlights

  • When giving treatment for bacterial infection with antibiotics, accurate identification of the causative pathogen is essential to guide their appropriate use

  • 1809 samples were tested by VITEK2, and 1721 were tested by manual methods

  • The concordance was calculated at the species and genus levels

Read more

Summary

Introduction

When giving treatment for bacterial infection with antibiotics, accurate identification of the causative pathogen is essential to guide their appropriate use. There are several ways to identify causative bacteria and fungi, including biochemical methods, antigen and gene detection techniques [1]. Biochemical methods, by manual tests and/or using automated equipment such as VITEK2, have been the reference-standard for the identification of bacteria in resource-limited settings. Biochemical methods usually take at least 24–48 h, including conventional culture, to identify those bacteria or fungi and can lead to delayed treatment. MALDI–TOF MS has a high level of accuracy and provides a rapid identification (10–15 min) of microbes compared with biochemical methods [4,5,6]. MALDI–TOF MS can differentiate with high accuracy species that are difficult to be identified by biochemical methods such as Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella and Kingella (HACEK) groups, coagulase-negative

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call