Abstract

Accurately modeling heterogeneous catalysis requires accurate descriptions of rate-controlling elementary reactions of molecules on metal surfaces, but standard density functionals (DFs) are not accurate enough for this. The problem can be solved with the specific reaction parameter approach to density functional theory (SRP-DFT), but the transferability of SRP DFs among chemically related systems is limited. We combine the MS-PBEl, MS-B86bl, and MS-RPBEl semilocal made simple (MS) meta-generalized gradient approximation (GGA) (mGGA) DFs with rVV10 nonlocal correlation, and we evaluate their performance for the hydrogen (H2) + Cu(111), deuterium (D2) + Ag(111), H2 + Au(111), and D2 + Pt(111) gas-surface systems. The three MS mGGA DFs that have been combined with rVV10 nonlocal correlation were not fitted to reproduce particular experiments, nor has the b parameter present in rVV10 been reoptimized. Of the three DFs obtained the MS-PBEl-rVV10 DF yields an excellent description of van der Waals well geometries. The three original MS mGGA DFs gave a highly accurate description of the metals, which was comparable in quality to that obtained with the PBEsol DF. Here, we find that combining the three original MS mGGA DFs with rVV10 nonlocal correlation comes at the cost of a slightly less accurate description of the metal. However, the description of the metal obtained in this way is still better than the descriptions obtained with SRP DFs specifically optimized for individual systems. Using the Born–Oppenheimer static surface (BOSS) model, simulations of molecular beam dissociative chemisorption experiments yield chemical accuracy for the D2 + Ag(111) and D2 + Pt(111) systems. A comparison between calculated and measured E1/2(ν, J) parameters describing associative desorption suggests chemical accuracy for the associative desorption of H2 from Au(111) as well. Our results suggest that ascending Jacob’s ladder to the mGGA rung yields increasingly more accurate results for gas-surface reactions of H2 (D2) interacting with late transition metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.