Abstract
Medical researchers and clinicians have shown much interest in developing machine learning (ML) algorithms to detect/predict surgical site infections (SSIs). However, little is known about the overall performance of ML algorithms in predicting SSIs and how to improve the algorithm's robustness. We conducted a systematic review and meta-analysis to summarize the performance of ML algorithms in SSIs case detection and prediction and to describe the impact of using unstructured and textual data in the development of ML algorithms. MEDLINE, EMBASE, CINAHL, CENTRAL and Web of Science were searched from inception to March 25, 2021. Study characteristics and algorithm development information were extracted. Performance statistics (e.g., sensitivity, area under the receiver operating characteristic curve [AUC]) were pooled using a random effect model. Stratified analysis was applied to different study characteristic levels. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Diagnostic Test Accuracy Studies (PRISMA-DTA) was followed. Of 945 articles identified, 108 algorithms from 32 articles were included in this review. The overall pooled estimate of the SSI incidence rate was 3.67%, 95% CI: 3.58-3.76. Mixed-use of structured and textual data-based algorithms (pooled estimates of sensitivity 0.83, 95% CI: 0.78-0.87, specificity 0.92, 95% CI: 0.86-0.95, AUC 0.92, 95% CI: 0.89-0.94) outperformed algorithms solely based on structured data (sensitivity 0.56, 95% CI:0.43-0.69, specificity 0.95, 95% CI:0.91-0.97, AUC=0.90, 95% CI: 0.87-0.92). ML algorithms developed with structured and textual data provided optimal performance. External validation of ML algorithms is needed to translate current knowledge into clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.