Abstract

To reduce radiation damage caused by the electron beam and to obtain high-contrast images of specimens, we have developed a highly stabilized transmission electron microscope equipped with a cold field emission gun and spherical aberration correctors for image- and probe-forming systems, which operates at lower acceleration voltages than conventional transmission electron microscopes. A delta-type aberration corrector is designed to simultaneously compensate for third-order spherical aberration and fifth-order 6-fold astigmatism. Both were successfully compensated in both scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) modes in the range 30-60 kV. The Fourier transforms of raw high-angle annular dark field (HAADF) images of a Si[110] sample revealed spots corresponding to lattice spacings of 111 and 96 pm at 30 and 60 kV, respectively, and those of raw TEM images of an amorphous Ge film with gold particles showed spots corresponding to spacings of 91 and 79 pm at 30 and 60 kV, respectively. Er@C(82)-doped single-walled carbon nanotubes, which are carbon-based samples, were successfully observed by HAADF-STEM imaging with an atomic-level resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call