Abstract
High-temperature superconductors (HTS) are promising candidates for use in the high-field magnets needed in particle accelerators and fusion reactors. HTS conductor on round core (CORC®) cables and wires wound from ReBa2Cu3O7-x (REBCO) coated tapes are being developed for use in high-field magnet applications including fusion magnets operating at currents beyond 80 kA, requiring them to be bundled into cable-in-conduit conductor (CICC) configurations. The use of HTS cables enable demountable superconducting fusion magnets that would allow easier access to the fusion machine for maintenance and parts replacement. Such demountable magnets require practical, low-resistance joints, capable of injecting current uniformly into the many REBCO tapes that make up different cable designs. Optimization steps on CORC® cables have resulted in high-current terminations and joints with a joint resistance measured between a pair of 30-tape CORC® cables of 51 nΩ at 76 K and 1.9 nΩ at 4 K. Demountable joints between CICCs consisting of six CORC® cables arranged in flat and round configurations were also tested and compared to joints between low-temperature superconducting (LTS) CICCs consisting of NbTi Rutherford cables. Samples were paired into two configurations (LTS-to-LTS and HTS-to-HTS) with a demountable joint between them that were each tested in series with currents up to 10 000 A in an applied background magnetic field of up to 8 T. The total loop resistance of the HTS-to-HTS sample, including their terminations and joint, was about 4 nΩ at 4 K in self-field with the resistance of the copper pressed joint being less than 1 nΩ. At 8 T, the total loop resistance increased to 6.9 nΩ with the pressed joint contributing 1.4 nΩ. These initial tests prove the feasibility of producing remountable (dry) joints with low resistance between superconducting magnet windings in future compact fusion machines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.