Abstract

In this study, we performed seismic vulnerability assessment and mapping of the ML5.8 Gyeongju Earthquake in Gyeongju, South Korea, as a case study. We applied logistic regression (LR) and four kernel models based on the support vector machine (SVM) learning method to derive suitable models for assessing seismic vulnerabilities; the results of each model were then mapped and evaluated. Dependent variables were quantified using buildings damaged in the 9.12 Gyeongju Earthquake, and independent variables were constructed and used as spatial databases by selecting 15 sub-indicators related to earthquakes. Success and prediction rates were calculated using receiver operating characteristic (ROC) curves. The success rates of the models (LR, SVM models based on linear, polynomial, radial basis function, and sigmoid kernels) were 0.652, 0.649, 0.842, 0.998, and 0.630, respectively, and the prediction rates were 0.714, 0.651, 0.804, 0.919, and 0.629, respectively. Among the five models, RBF-SVM showed the highest performance. Seismic vulnerability maps were created for each of the five models and were graded as safe, low, moderate, high, or very high. Finally, we examined the distribution of building classes among the 23 administrative districts of Gyeongju. The common vulnerable regions among all five maps were Jungbu-dong and Hwangnam-dong, and the common safe region among all five maps was Gangdong-myeon.

Highlights

  • Natural disasters such as earthquakes, landslides, or tsunamis damage buildings and cause loss of human life as well as environmental and economic losses due to unexpected changes in the environment [1]

  • This research is important because it considered various components in evaluating seismic vulnerability and it showed that seismic vulnerability maps can be developed based on various models

  • Evaluation of the significant factors using logistic regression revealed that building age, distance to roads, and construction materials had less influence on the evaluation of seismic vulnerability in the relevant region

Read more

Summary

Introduction

Natural disasters such as earthquakes, landslides, or tsunamis damage buildings and cause loss of human life as well as environmental and economic losses due to unexpected changes in the environment [1]. Despite their low occurrence rate compared to other natural disasters, earthquakes cause considerable damage [5]. The Korean Peninsula is located inside the Eurasian plate, and has the characteristics of the Intraplate as it is close to the Japan and Ryukyu trenches where the Pacific plate and the Philippine plate enter the lower part of the Eurasian plate. It has accumulated local seismological stress due to plate tectonic movement. Since the beginning of the twentieth century, no major changes in seismic activity have occurred in the Korean Peninsula, which exhibits a low frequency of mid- to large-level earthquakes [7]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.