Abstract

This work presents an energy/exergy analysis to investige performance of thermal storage unit which loaded with a commercial phase change material (Plus ICE H190). The influence of fluid parameters on the energy/exergy effectiveness was examined. The temporal changes of the energy and exergy rate and performace of the storage unit are obtained in the results. Latent heat principle is considered an efficient method to gain a higher effectiveness of system from an energy and exergy aspects. The fluid mass flow rate during charging and discharging periods were 2.50 kg/min and 1.26 kg/min, respectively. The results showed a significant increase of thermal resistance on the thermal storage unit performance. Fluid and phase change material show significant temperature difference on the rate of energy/exergy quantites and the time of melting or soldification. Ther results indicated that the average rate of energy and exergy were 1.3 kW and 0.54 kW, respectively. Wheras, energy and exergy average rate during discarging periods were 1.1 kW and 0.31 kW, respectively. Also, the global rate during the experimetal periods were about 84% and 54%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.