Abstract

The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.

Highlights

  • Efforts to mitigate climate change require the stabilization of atmospheric CO2 concentrations [1], which is significantly regulated by exchanges of carbon between terrestrial ecosystems and the atmosphere

  • gross primary productivity (GPP) simulated by MOD17 always linearly increase with incident PAR while the increase of GPP with incident PAR is nonlinear in both TL-LUEn and TL-light use efficiency (LUE)

  • Our analysis showed that GPP simulated by TL-LUEn and TL-LUE is slightly more sensitive to leaf area index (LAI) than that simulated by

Read more

Summary

Introduction

Efforts to mitigate climate change require the stabilization of atmospheric CO2 concentrations [1], which is significantly regulated by exchanges of carbon between terrestrial ecosystems and the atmosphere. Accurately simulating terrestrial GPP is of great significance to quantifying the global carbon cycle and predicting the future trajectories of the atmospheric CO2 concentration. Two approaches have been widely employed to investigate the spatial and temporal variability in GPP using remotely sensed data: (i) remote sensing driven process-based models, and (ii) light use efficiency (LUE) models [4]. The former is based on the mechanistic description of the photosynthetic biochemical processes and scales the Farquhar instantaneous leaf-level biochemical model [5] to the canopy level using big-leaf, two-leaf, and multilayer scaling approaches. The application of these process-based models is limited by the complexity and uncertainty of their parameterization [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.