Abstract

We compare the usefulness of nonparametric and parametric methods of diameter distribution modeling. The nonparametric method was represented by the new tool—kernel estimator of cumulative distribution function with bandwidths of 1 cm (KE1), 2 cm (KE2), and bandwidth obtained automatically (KEA). Johnson SB (JSB) function was used for the parametric method. The data set consisted of 7867 measurements made at breast height in 360 sample plots established in 36 managed black alder (Alnus glutinosa (L.) Gaertn.) stands located in southeastern Poland. The model performance was assessed using leave-one-plot-out cross-validation and goodness-of-fit measures: mean error, root mean squared error, Kolmogorov–Smirnov, and Anderson–Darling statistics. The model based on KE1 revealed a good fit to diameters forming training sets. A poor fit was observed for KEA. Frequency of diameters forming test sets were properly fitted by KEA and poorly by KE1. KEA develops more general models that can be used for the approximation of independent data sets. Models based on KE1 adequately fit local irregularities in diameter frequency, which may be considered as an advantageous in some situations and as a drawback in other conditions due to the risk of model overfitting. The application of the JSB function to training sets resulted in the worst fit among the developed models. The performance of the parametric method used to test sets varied depending on the criterion used. Similar to KEA, the JSB function gives more general models that emphasize the rough shape of the approximated distribution. Site type and stand age do not affect the fit of nonparametric models. The JSB function show slightly better fit in older stands. The differences between the average values of Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and root mean squared error (RMSE) statistics calculated for models developed with test sets were statistically nonsignificant, which indicates the similar usefulness of the investigated methods for modeling diameter distribution.

Highlights

  • Diameter at breast height is a basic tree attribute that is important to both forestry practice and science

  • The differences between the average values of Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and root mean squared error (RMSE) statistics calculated for models developed with test sets were statistically nonsignificant, which indicates the similar usefulness of the investigated methods for modeling diameter distribution

  • The MLE used for parameter estimation of Johnson SB (JSB) function failed for 48 (13.3%) training sets due to lack of convergence

Read more

Summary

Introduction

Diameter at breast height (dbh) is a basic tree attribute that is important to both forestry practice and science. It is a simple to measure, and closely related to other difficult to obtain tree features. Diameter as an explanatory variable is used to predict tree attributes such as height [1,2], crown length [3,4], bark thickness [5], volume [6,7], biomass [8,9], and carbon storage [10]. The mean diameter provides only a general view of a tree stand, and it is required to know dbh distribution in order to obtain detailed information about the stand [11]. It was obvious that dbh distribution models can Forests 2020, 11, 634; doi:10.3390/f11060634 www.mdpi.com/journal/forests

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call