Abstract

This study evaluated the applicability of IRI-2016 model in predicting GPS TEC using the monthly means of the five (5) quiet days for equinoxes and solstices months. GPS-derived TEC data were obtained from the IGS network of ground based dual frequency GPS receivers from three stations [(KYN3 0.53° S, 38.53° E; Geom. Lat. 3.91.63° S), (MBAR 0.60° S, 30.74° E; Geom. Lat. 2.76° S) and HOID 1.45° S, 31.34° E; Geom. Lat. 3.71° S]. All the three options for topside Ne of IRI-2016 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. The results were compared with the GPS TEC measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. In general, the IRI-2016 model underestimated GPS-TEC during the nighttime, whereas the model overestimated GPS-TEC values during the daytime. At most of the stations and during all seasons where data were available, correlation coefficient was above 0.9, which is quite strong. The variation of O/N2 ratio may potentially be the cause of the IRI TEC deviation from the GPS TEC. This variation arises from lower thermosphere plasma drift that moves upward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call