Abstract

The recent literature on near-term applications for quantum computers contains several examples of the applications of hybrid quantum-classical variational approaches. This methodology can be applied to a variety of optimization problems, but its practical performance is not well studied yet. This paper moves some steps in the direction of characterizing the practical performance of the methodology, in the context of finding solutions to classical combinatorial optimization problems. Our study is based on numerical results obtained applying several classical nonlinear optimization algorithms to Hamiltonians for six combinatorial optimization problems; the experiments are conducted via noise-free classical simulation of the quantum circuits implemented in Qiskit. We empirically verify that: (1) finding the ground state is harder for Hamiltonians with many Pauli terms; (2) classical global optimization methods are more successful than local methods due to their ability of avoiding the numerous local optima; (3) there does not seem to be a clear advantage in introducing entanglement in the variational form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.