Abstract
The purification of the primary treated domestic sewage was performed in the present study through the horizontal sub-surface flow constructed wetland (CW) of 10 × 3.5 m dimension. The study was performed using three setups of CW 1 (Unplanted CW), CW 2 (CW planted with macrophyte Typha latifolia), and CW 3 (CW planted with two species of macrophyte T. latifolia and Commelina benghalensis). The purification experiments were performed by converting one type of CW into the other form sequentially, i.e., CW 1 was built first and after the experiments, it was converted into CW 2 and then CW 3. The CW was filled with a layer of coarse and fine gravel of 70 cm depth as filter media in 1:2 ratio. Each set of wetland was operated for 3 months (12 wk) during which the treatment performance of wetlands for basic physicochemical parameters was evaluated. The CW was operated in continuous mode at an average hydraulic loading rate of 250 L h− 1 and the treated effluent was analysed twice every week at four different sampling points having hydraulic retention times (HRT) of 12, 24, 36 and 48 h for important sewage quality parameters All the three setups of CW were able to clean the primary treated sewage significantly. Among the three sets of wetlands used, CW 3 was the best performer removing 79, 77, 79, 79, and 78% of biochemical oxygen demand, chemical oxygen demand, nitrate, ammonia, and phosphate respectively in 48 h HRT. Among the three sets of wetlands, the CW 3 removed the highest percent of total coliforms, fecal coliforms, and E. coli as 64, 61 and 52% respectively.
Highlights
Water resources in India are facing a serious threat of contamination due to the continuous discharge of wastewater from various sources such as domestic wastewater, industrial effluent, and agricultural run-off, etc. [1]
Experimental constructed wetland The results of the present study are based on the findings of the operation of the CWs on the campus of Indira Gandhi National Tribal University (IGNTU), Amarkantak, MP, India [3]
The primary treated domestic sewage was collected from the sewage treatment plant (STP) of IGNTU campus and that pH, temperature, conductivity, and total dissolved solids (TDS) were analysed immediately after collection (Table 1)
Summary
Water resources in India are facing a serious threat of contamination due to the continuous discharge of wastewater from various sources such as domestic wastewater, industrial effluent, and agricultural run-off, etc. [1]. The substantial amount of sewage (38,791 MLD) is discharged into a water body in an untreated manner. It is predicted that by 2051 urban and rural India will generate 120,000 and 50,000 MLD of sewage, respectively, with very little probability of complete treatment of all the generated wastewater [5]. The generated sewage may be directly discharged in an untreated manner, creating water pollution and at the same time, freshwater availability would be declining [4]. CWs have been adopted as an ecologically sustainable and economically viable solution for the treatment of wastewater [9]. Selection of CWs for wastewater treatment has several advantages, i.e., low-cost setup with longer life, less maintenance requirement, needs no electricity, effective pollutant removal, a self-sustaining system with scenic beauty. The main disadvantage of CWs is its large surface area requirement for its installations, but this can be very useful in rural areas where land availability is not an issue [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.