Abstract

Multilayer ceramic and salt composite cells were prepared superimposing up to seven alternate layers of Ce0.9Gd0.1O1.95 (CGO) and mixtures of Na2CO3 (NC) and Li2CO3 (LC), with final sintering around 500 °C. Various other single component cells (CGO or NC + LC) and homogeneous composites (consisting of intimate mixtures of ceramics and salts) were prepared and used as reference. All these materials were characterized by X-ray diffraction, scanning electronic microscopy and impedance spectroscopy, in air.The layered cells electrical performance was studied both as series or parallel associations to try to inspect the specific electrical performance of the ceramic/salt interface. The multilayer cells resistance showed a close agreement with prediction based on classical series or parallel association models, and no sign of special contributions originated in the ceramic/salt interface. However, the electrode impedance appeared quite distinct for the various types of cells under analysis (single component, homogeneous and layered composites). This indeed suggests that interfaces play a role on the overall cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.