Abstract

Self-consolidating concrete (SCC) is a stable and cohesive high consistency concrete mix with enhanced filling ability properties that reduce the need for mechanical compaction. Limited standards and specifications have been reported in the literature on the structural behavior of reinforced self-compacting concrete elements. The significance of the research presented in this paper stems from the need to investigate the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete beams. To meet the objectives of this research, twelve reinforced concrete beams were prepared with two different generations of superplasticizers and designed to exhibit flexure, shear, or bond splitting failure. The compared beams were identical except for the type of superplasticizer being used (second generation sulphonated-based superplasticizer or third generation polycarboxylate-based superplasticizer). The outcomes of the experimental work revealed comparable resistance of beam specimens made with self-compacting (SCC) and conventional vibrated concrete (VC). The dissimilarities in the experimental values between the SCC and the control VC beams were not major, leading to the conclusion that the high flowability of SCC has little effect on the flexural, shear and bond strengths of concrete members.

Highlights

  • Self-consolidating concrete (SCC) is distinguished by its high fluidity, passing ability and cohesiveness characteristics that eliminate or reduce to a minimum the need for mechanical compaction

  • To limit the number of variables merely to the type of admixture used in the concrete mix, the experiments of the first two phases of the research aimed at establishing an optimum mix design with a common dosage of second or third generation superplasticizer that would ensure the minimum workability characteristics for vibrated concrete (VC) and the high consistency properties for SCC

  • The first variable is the type of concrete used in the placement of the tested beams: SCC denotes that third generation (PCE) was incorporated in the production of the concrete mix, while VC indicates that the concrete mix was made using second generation (SNF) superplasticizer

Read more

Summary

Introduction

Self-consolidating concrete (SCC) is distinguished by its high fluidity, passing ability and cohesiveness characteristics that eliminate or reduce to a minimum the need for mechanical compaction. To limit the number of variables merely to the type of admixture used in the concrete mix, the experiments of the first two phases of the research aimed at establishing an optimum mix design with a common dosage of second or third generation superplasticizer that would ensure the minimum workability characteristics for vibrated concrete (VC) and the high consistency properties for SCC. The research reported in this paper constitutes the third phase of the experimental program It investigates and compares the structural behavior of reinforced concrete beams cast using the optimal high strength SCC and VC mixes established in the first two phases of the research with a second generation (SNF) or third generation (PCE) superplasticizer content of 1.6 % of the total weight of cement

Literature Review
Research Objectives
Materials and Methods
Analysis of Test Results
Splitting Tensile Strength
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call