Abstract

Haiyang-2 (HY-2) missions have accumulated sea surface height (SSH) observations on a global scale for more than 10 years. Four satellites, HY-2A, HY-2B, HY-2C and HY-2D, provide even but differently distributed data, which play a complementary role in marine gravity studies with other missions. Therefore, this paper evaluates the performances of HY-2 altimetric data in marine gravity modeling from the following four perspectives: SSH accuracy, geoid signal resolution ability, vertical deflections and gravity anomaly. First, the centimeter-magnitude accuracy level of HY-2 data is proved by analyzing SSH discrepancies at crossover points within a certain time limit. Second, the spectral analysis of repetitive along-track data sequences in a time domain shows a geoid resolution range from 18 to 24 km. Taking HY-2 exact repeat missions (ERM), for example, the resolution could be remarkably enhanced by stacking repetitive cycles. Third, validation with an XGM2019 model showed that vertical deflections were reliably computed for all HY-2 missions, but HY-2A performed slightly worse than the other HY-2 missions. Meanwhile, HY-2C and HY-2D with a ~66° orbital inclination obviously had an improved ability to capture east–west signals compared to HY-2A and HY-2B. Finally, we constructed global marine gravity results based on three input datasets, HY-2 dataset only, multi-satellite dataset without HY-2 and multi-satellite dataset with HY-2. Validations were performed using published models and shipborne gravimetric data. The results showed that the HY-2 dataset is capable of improving marine gravity anomaly recoveries and that the accuracy of NSOAS22 with incorporated HY-2 data is comparable to DTU21 and SS V31.1. Furthermore, HY-2 observations should not be the only input dataset to construct a 1’ × 1’ resolution marine gravity model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call