Abstract

Ground-level traffic lights or safety signs have been introduced recently as a prevention measure for smartphone-related pedestrian accidents. However, quantitative evaluation of smartphone users' detection performance during distracted walking has been scarce. A laboratory experiment was conducted to evaluate the performance of detecting ground-level visual cues during the concurrent use of a smartphone while walking. Thirty-eight young smartphone users performed ground-level visual cue detection trials, 1) while walking upright on a treadmill without using a smartphone; 2) when conducting one-handed browsing while walking; and, 3) when conducting two-handed texting while walking. Visual cues were presented on the ground at 24 locations by a ceiling-mounted projector, and participants were asked to respond verbally when they perceived the appearance of each cue. Study results show that the concurrent use of a smartphone decreased the detection rate significantly (p < 0.05) from 93.5 % to 76.3∼74.1 %, and increased the reaction time from 0.90 s to 1.04∼1.15 s. Among the 24 cue locations, cues that were presented closer to participants were detected significantly (p < 0.05) more often and faster than cues that were shown at further locations. The results of this laboratory-based study imply that the ground-level signals might not be detected well by smartphone users, specifically when they were conducting more demanding tasks such as texting while walking. However, the laboratory conditions were confined to a specific usage environment; therefore, future research should be focused on the situation awareness of smartphone users under various usage scenarios and more realistic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call