Abstract

Nanocomposite materials have been successfully applied to remediation of organic and inorganic contaminants from polluted water. The present study investigates the synthesis, characterizations, and adsorptive performances of graphene oxide/SiO2 nanocomposite-based adsorbent. Graphene oxide/SiO2 was used for the adsorption of methylene blue (MB) and Cr (VI) ion from wastewater. Furthermore, the antibacterial activity performance of synthesized nanocomposite was studied. The adsorption consideration has been performed by various adsorption parameters in our laboratory. X-ray crystallography (XRD), Scanning electron microscope (SEM), Energy Dispersive X-ray Analysis (EDX) and, thermal gravimetric analysis (TGA) methods were applied in the characterization, morphological structure, crystallinity, and thermal stability of graphene oxide/SiO2. Maximum capacities of adsorption of graphene oxide/SiO2-based adsorbent had been evaluated by the Langmuir isotherm model for MB and Cr (VI) ion as 555.50 and 181.81 mg/g, respectively. Generally, adsorption experiments revealed that the performances of graphene oxide/SiO2 nanocomposite for all adsorbents have been found in the order MB > Cr (VI). Furthermore, antibacterial activity study against gram-positive and gram-negative bacteria showed and proved that graphene oxide/SiO2 composite showed a remarkable ability to kill bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call