Abstract

AbstractThis study investigates algebraic multilevel domain decomposition preconditioners of the Schwarz type for solving linear systems associated with Newton–Krylov methods. The key component of the preconditioner is a coarse approximation based on algebraic multigrid ideas to approximate the global behaviour of the linear system. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the non‐zero block structure of the Jacobian matrix. The scalability of the preconditioner is presented as well as comparisons with a two‐level Schwarz preconditioner using a geometric coarse grid operator. These comparisons are obtained on large‐scale distributed‐memory parallel machines for systems arising from incompressible flow and transport using a stabilized finite element formulation. The results demonstrate the influence of the smoothers and coarse level solvers for a set of 3D example problems. For preconditioners with more than one level, careful attention needs to be given to the balance of robustness and convergence rate for the smoothers and the cost of applying these methods. For properly chosen parameters, the two‐ and three‐level preconditioners are demonstrated to be scalable to 1024 processors. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.