Abstract

Supertree methods are used to assemble separate phylogenetic trees with shared taxa into larger trees (supertrees) in an effort to construct more comprehensive phylogenetic hypotheses. In spite of much recent interest in supertrees, there are still few methods for supertree construction. The flip supertree problem is an error correction approach that seeks to find a minimum number of changes (flips) to the matrix representation of the set of input trees to resolve their incompatibilities. A previous flip supertree algorithm was limited to finding exact solutions and was only feasible for small input trees. We developed a heuristic algorithm for the flip supertree problem suitable for much larger input trees. We used a series of 48- and 96-taxon simulations to compare supertrees constructed with the flip supertree heuristic algorithm with supertrees constructed using other approaches, including MinCut (MC), modified MC (MMC), and matrix representation with parsimony (MRP). Flip supertrees are generally far more accurate than supertrees constructed using MC or MMC algorithms and are at least as accurate as supertrees built with MRP. The flip supertree method is therefore a viable alternative to other supertree methods when the number of taxa is large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.