Abstract
SummaryA major challenge in asynchronous packet‐based optical networks is packet contention, which occurs when two or more packets head to the same output at the same time. To resolve contention in the optical domain, two primary approaches are wavelength conversion and fiber delay line (FDL) buffering. In wavelength conversion, a contending packet can be converted from one wavelength to another in order to avoid conflict. In FDL buffering, contending packets can be delayed for a fixed amount of time. While the performance of wavelength conversion and FDL buffering has been evaluated extensively in synchronous networks with fixed‐sized packets, in this paper, we study the performance of FDL buffers in asynchronous packet‐based optical networks with wavelength conversion. An analytical model is proposed to evaluate the performance in terms of packet loss probability and average delay. Extensive simulation and analytical results show that, with appropriate settings, FDL buffers can perform much better in switches with wavelength conversion than in switches with no conversion. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.