Abstract
Large-scale multiphysics simulations are computationally challenging due to the coupling of multiple processes with widely disparate time scales. The advent of exascale computing systems exacerbates these challenges since these systems enable ever-increasing size and complexity. In recent years, there has been renewed interest in developing multirate methods as a means to handle the large range of time scales, as these methods may afford greater accuracy and efficiency than more traditional approaches of using implicit-explicit (IMEX) and low-order operator splitting schemes. However, to date there have been few performance studies that compare different classes of multirate integrators on complex application problems. In this work, we study the performance of several newly developed multirate infinitesimal (MRI) methods, implemented in the SUNDIALS solver package, on two reacting flow model problems built on structured mesh frameworks. The first model revisits prior work on a compressible reacting flow problem with complex chemistry that is implemented using BoxLib but where we now include comparisons between a new explicit MRI scheme with the multirate spectral deferred correction (SDC) methods in the original paper. The second problem uses the same complex chemistry as the first problem, combined with a simplified flow model, but runs at a large spatial scale where explicit methods become infeasible due to stability constraints. Two recently developed IMEX MRI multirate methods are tested. These methods rely on advanced features of the AMReX framework on which the model is built, such as multilevel grids and multilevel preconditioners. The results from these two problems show that MRI multirate methods can offer significant performance benefits on complex multiphysics application problems and that these methods may be combined with advanced spatial discretization to compound the advantages of both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of High Performance Computing Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.