Abstract
BackgroundValidated computable eligibility criteria use real-world data and facilitate the conduct of clinical trials. The Genomic Medicine at VA (GenoVA) Study is a pragmatic trial of polygenic risk score testing enrolling patients without known diagnoses of 6 common diseases: atrial fibrillation, coronary artery disease, type 2 diabetes, breast cancer, colorectal cancer, and prostate cancer. We describe the validation of computable disease classifiers as eligibility criteria and their performance in the first 16 months of trial enrollment. MethodsWe identified well-performing published computable classifiers for the 6 target diseases and validated these in the target population using blinded physician review. If needed, classifiers were refined and then underwent a subsequent round of blinded review until true positive and true negative rates ≥80% were achieved. The optimized classifiers were then implemented as pre-screening exclusion criteria; telephone screens enabled an assessment of their real-world negative predictive value (NPV-RW). ResultsPublished classifiers for type 2 diabetes and breast and prostate cancer achieved desired performance in blinded chart review without modification; the classifier for atrial fibrillation required two rounds of refinement before achieving desired performance. Among the 1077 potential participants screened in the first 16 months of enrollment, NPV-RW of the classifiers ranged from 98.4% for coronary artery disease to 99.9% for colorectal cancer. Performance did not differ by gender or race/ethnicity. ConclusionsComputable disease classifiers can serve as efficient and accurate pre-screening classifiers for clinical trials, although performance will depend on the trial objectives and diseases under study.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.