Abstract

The sensitivity and specificity of eDNA-based monitoring, coupled with its potential utility to estimate population density or biomass, makes it a useful tool in invasive species management. In this study, we investigated the potential of the eDNA method to improve the detection of the elusive invasive fish, oriental weatherloach (Misgurnus anguillicaudatus), in a river system where a density gradient of the species occurs. We compared detection rates between eDNA and conventional monitoring methods and examined the relationship between eDNA and abundance in a flowing environment. The eDNA method had a higher site detection rate than conventional methods (63 vs. 38%). Weatherloach eDNA was detected at all sites where the fish has been previously caught and none of the sites where the species has not been caught for the past 7 years. There was an increasing density trend going downstream based on long-term conventional monitoring, but the eDNA concentration in water samples reflected this trend only in a continuous section of the river where impoundments were absent. We did not find a positive relationship between eDNA concentration and contemporary abundance estimates in our study area. A high eDNA concentration was recorded at a site (DVC) which was designated a low density site based on long-term catch data. This discrepancy was a likely result of physical habitat characteristics which influenced the efficiency of the conventional methods used. This study highlighted the challenges of inferring density from eDNA data in flowing water because habitat features may confound results, necessitating careful consideration for results to be useful to management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.