Abstract

The efficacy of several multiconfiguration self-consistent field (MCSCF) methods in the subsequent spin-orbit coupling calculations was studied. Three MCSCF schemes to generate molecular orbitals were analyzed: state-specific, state-averaged, and dynamically weighted MCSCF. With Sn(2)(+) as the representative case, we show that the state-specific MCSCF orbitals lead to discontinuities in potential energy curves when avoided crossings of electronic states occur; this problem can be solved using the state-averaged or dynamically weighted MCSCF orbitals. The latter two schemes are found to give similar results when dynamic electron correlation is considered, which we calculated at the level of multiconfigurational quasidegenerate perturbation theory (MCQDPT). We employed the recently developed Douglas-Kroll spin-orbit adapted model core potential, ZFK3-DK3, and the dynamically weighted MCSCF scheme to calculate the spectroscopic constants of the mono-hydrides and compared them to the results obtained using the older set of potentials, MCP-TZP. We also showed that the MCQDPT tends to underestimate the dissociation energies of the hydrides and discussed to what extent coupled-cluster theory can be used to improve results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call