Abstract
We report a very efficient semianalytical approach for the performance evaluation of differential detection schemes for GMSK signals of the DECT standard. Precisely, for a given channel, the performance is determined by means of an analytical procedure which includes the saddlepoint approximation. We consider both static channels (with impulse response generated by the simulation program SIRCIM) and two-ray Rayleigh and log-normal fading channels. As a departure from previous works, our receiver includes an all-digital part after the analog differential detection scheme. The digital part includes: (1) a block for the estimation of both the optimum sampling phase and the nonlinear channel coefficients (by making use of the DECT training sequence), (2) a one-tap decision feedback (DF) equalizer, and (3) a block for the evaluation of the approximate optimum bias level (/spl gamma//sub e/) in the threshold detector. Both the DF equalizer coefficient and /spl gamma//sub e/ are based on the nonlinear channel coefficients estimate. For channels with a normalized delay spread up to 0.2, the use of the optimum threshold together with the DF equalizer permits a gain of about 2 dB at BER=10/sup -6/ with respect to a receiver without equalization and a zero-level decision threshold. In addition, we discover that, in indoor environments, the 2-bit GMSK detector performs roughly the same as the 1-bit detector. The threshold optimization is also effective in the presence of channels affected by fading. To support this statement, we report the performance of the 1-bit differential detection scheme combined with antenna selection diversity in the presence of a two-ray log-normal and Rayleigh fading channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.