Abstract

Reducing vibrations occurring in structures under environmental loads makes a significant contribution to the development of structural safety. Tuned mass dampers (TMD) are one of the systems commonly used to control structural vibrations. Since TMD is adjusted according to the dominant frequency of the structure, factors that may cause changes in the frequency of the structure can significantly reduce the effectiveness of TMD. One of the main factors that can cause changes in the frequency values of the structure is the interaction between the structure and the soil. To overcome this situation, it is recommended to apply control systems consisting of multiple TMDs (MTMD) to the main structure instead of a single TMD. MTMD systems are arranged in two different types, serial and parallel. In this paper, a methodology that considers the structure-soil interaction (SSI) is presented for the optimum design of control systems with different configurations placed on a main structure under the influence of ground motion. To research the SSI effects, the TMDs-structure coupled system is supported by rocking and swaying springs and the corresponding dashpots, and then the equations of motions of the structural system are derived. In the optimization process based on particle swarm optimization in the frequency domain, different soil types, configuration types, and mass ratios are considered. The efficiency of optimum TMDs arranged in series and parallel is also evaluated using near and far fault ground motions in the time domain. Numerical results show that if structures are constructed on soils with low shear wave velocities, ignoring SSI can significantly change the design parameters and effectiveness of the control system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.