Abstract

Laser communication is essential part of maritime-terrestrial-air intelligent communication/sensor network. Among them, different modulation formats would play a unique role in specific applications. Based on Rytov theory, we discussed system performance of the maritime laser communication with repeated coding technology in several modulation schemes. The closed-form expression of average bit error rate (BER) from weak to moderate atmospheric turbulence described by log-normal distribution is given. Differential phase shift keying (DPSK) modulation, as a potential solution for future maritime laser communication, has attracted a lot of attention. We analyzed the effects of atmospheric turbulence parameters (visibility, refractive index structure coefficient, non-Kolmogorov spectral power-law exponent, turbulence inner scale) and DPSK system parameters (receiver aperture diameter, repeat time) on average BER in detail. Compared with the aperture-averaging effects, the system BER can be well suppressed through increasing repeat time. This work is anticipated to provide a theoretical reference for maritime laser communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.