Abstract

SummaryElectric Vehicles (EVs) are gradually replacing conventional vehicles as they are environmentally friendly and cause less pollution problems. Unregulated charging has severe impacts on the distribution grid and may incur EV owners higher charging costs. Therefore, controlled charging infrastructures to supply the charging needs of large numbers of EVs are of vital importance. In this article, an optimal control scenario is presented to formulate the charge scheduling problem of EVs in a solar charging station (CS). Two different objective functions are considered. The first objective function holds for minimizing the total charging cost of EVs. In this case, the benefits of Vehicle‐to‐Grid (V2G) are investigated by comparing the charging costs of EVs with and without this capability. The total EV charging costs and grid benefits are also investigated in the second objective function which holds for minimizing the extracted power from the grid. A modified version of Dynamic Programming is used to solve the large state‐space model defined for the optimal control problem with extremely shorter computation time and minimal loss of optimality. Extensive simulations are done in two representative summer and winter climates to determine the role of solar energy in the CS performance. The results show that in the cost minimization algorithms, significant savings for EV owners and a smooth load shape for the grid are achieved. For the minimized power from the grid algorithm, a total near Photovoltaic (PV)‐curve charging power is obtained to exploit the PV power as much as possible to minimize the impacts on the grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.