Abstract

The aim of this research regards the evaluation of mechanical performance of a prototype panel made by steel fiber reinforced concrete, SFRC, on the top, and fiber reinforced pultruded sandwich panel, GFRP, on the bottom, subjected to combined moment-shear actions through four-bending test. Two different mechanical solutions were used for the connection of the panels. A first steel connection previously designed and a second one with resin applied uniformly on the surface of GFRP panel. The SFRC-G panel involves the analysis of the weakness of GFRP material due to its very low deformability, the risk of the local instability and the elastic brittle behaviour till the collapse, while steel is obviously characterized by elastic-plastic curve. However in the test proposed the ultimate limit state (SLU) involves first of all the loss of bond strength between materials. The panels length/thickness ratio has been previously designed to give prominence to flexural-shear combined actions and in verifying the connections capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call