Abstract

Dynamical decoupling can be used to preserve arbitrary quantum states despite undesired interactions with the environment, using control Hamiltonians affecting the system only. We present a system-independent analysis of dynamical decoupling based on leading order decoupling error estimates, valid for bounded-strength environments. Using as a key tool a renormalization transformation of the effective system-bath coupling Hamiltonian, we delineate the reliability domain of dynamical decoupling used for quantum state preservation, in a general setting for a single qubit. We specifically analyze and compare two deterministic dynamical decoupling schemes -- periodic and concatenated -- and distinguish between two limiting cases of fast versus slow environments. We prove that concatenated decoupling outperforms periodic decoupling over a wide range of parameters. These results are obtained for both ``ideal'' (zero-width) and realistic (finite-width) pulses This work extends and generalizes our earlier work, Phys. Rev. Lett. 95, 180501 (2005).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.