Abstract

A variety of alternatives to rehabilitate culverts have been developed over the past decades given their advantages over conventional open-cut culvert replacement. However, the performance of many of these systems has not yet been examined through laboratory testing. The objective of the present paper is to examine the performance of deteriorated steel culverts rehabilitated with spray-on liners when subjected to surface loads. Two 1200mm diameter corrugated steel pipelines with similar levels of deterioration in the invert-haunch area were buried to a depth of 1200mm and tested under service load employing a load frame simulating a single axle of a Canadian design truck. The pipelines were then rehabilitated with spray on-cementitious liners (each with a different target thickness). Once rehabilitated, the pipelines were examined again under the service load employing the single axle load frame at 1200mm of soil cover, and then tested employing a tandem axle load frame at 2100 and 1200mm of soil cover. During all tests, changes in diameter, curvature and liner strains were monitored. The data obtained indicates that the flexible pipelines responded like semi-rigid structures after rehabilitation. It was also observed that the difference in liner thickness of 30% did influence the response of the pipelines, and that extreme fiber tensions during service loading were 7% and 13% of the tensile strength of the liner materials for the 76mm and 51mm liner thicknesses that were specified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call