Abstract
Efficient, low-temperature, and catalytic methane-to-methanol conversion (MMC) is of great interest, as methanol can be used as a liquid fuel and is a value-adding intermediate in the petrochemical industry. MMC can be achieved through direct C–H activation or via oxidation in strongly acidic media using noble metal catalysts. However, these processes are expensive and generally have low selectivity for methanol. In contrast, copper-exchanged zeolites can facilitate methane oxidation stoichiometrically under mild conditions with high selectivities for methanol. Approaches for achieving catalytic MMC on copper-exchanged zeolites have recently been developed. A better understanding of this process is required in order to facilitate the design of more efficient catalysts. In this work, we benchmark the performance of density functional theory (DFT) for modeling the MMC pathway by a tri-copper complex, [Cu3O3(H2O)6]2+. This complex is reminiscent of [Cu3O3]2+ proposed as the active-site motif in the zeolite m...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.